
Isomorphism Classes of S-decorated Simple
Graphs

Edward Wibowo

Contents

1 Introduction 2

2 Example Case 4

3 Linear Graphs 7

4 Literature: Weisfeiler-Lehman Algorithm 14

5 Appendix 16

1

1 Introduction

This exploration will use the following definitions.

Definition 1. Let S be a set. An S-decorated graph is a graph G together with a
function l from V(G) to S.

Definition 2. An isomorphism of S-decorated graphs (G, l), (G′, l′) is an isomor-
phism ϕ from G to G′ such that l(v) = l′(ϕ(v)) for all v ∈ V(G).

Using these definitions, we seek to explore the following question.

Question 3. Let S be a finite set and n a non-negative integer. How many iso-
morphism classes of S-decorated simple graphs are there with n vertices?

To aid our exploration, we define a way to categorize l : V(G) → S using
ordered lists. We refer to these representations as the ordered list representation of
l.

Definition 4. Let S be a set and G be a graph with n vertices. The ordered list
representation of a function l : V(G) → S is a list of n elements [s1, s2, . . . , sn]
where each si ∈ S corresponds to the output of l for a unique vertex, and the
order of the elements in the list follows a predetermined order.

For example, suppose S = {a, b} and G is a graph with 3 vertices. If l maps
all vertices to a, then the ordered list representation of l is [a, a, a]. If l maps
one vertex to a and the other two to b, then the ordered list representation of l is
[a, b, b]. We note that the choice of which vertex is mapped to a and which two
are mapped to b is irrelevant; any l that maps one vertex to a and the other two
to b is represented as [a, b, b].

Next, we observe that for any number of vertices n and any S, if (G, l) is
isomorphic to (G′, l′), then l and l′ share the same ordered list representation.
This is formalized in the following lemma.

Lemma 5. Let G and G′ be simple graphs with n vertices and l and l′ be functions from
V(G) to an arbitrary set S. If (G, l) and (G′, l′) are S-decorated isomorphic, then l and
l′ share the same ordered list representation.

Proof. Suppose (G, l) and (G′, l′) are S-decorated isomorphic. Then, there exists
an isomorphism ϕ from G to G′ such that l(v) = l′(ϕ(v)) for all v ∈ V(G). Without
loss of generality, suppose we enumerate G and G′ as V(G) = {v1, v2, . . . , vn} and

2

V(G′) = {u1, u2, . . . , un} such that ϕ(vi) = ui for all valid i. Then, we write the
following equalities:

l(v1) = l′(ϕ(v1)) = l′(u1)

l(v2) = l′(ϕ(v2)) = l′(u2)

...
l(vn) = l′(ϕ(vn)) = l′(un).

Using the above equalities, the lists

[l(v1), l(v2), . . . , l(vn)] and [l′(u1), l
′(u2), . . . , l

′(un)]

must have the same elements in the same order. So, these lists must be identical.
Hence, l and l′ must share the same ordered list representation.

3

2 Example Case

To achieve a better understanding of the problem, we count the number of iso-
morphism classes of S-decorated simple graphs with 3 vertices and |S| = 2. By
Definition 2, an isomophism between two S-decorated simple graphs (G, l) and
(G′, l′) implies G is isomorphic to G′. Contrapositively, if G is not isomorphic to
G′, then (G, l) and (G′, l′) are not S-decorated isomorphic regardless of the choice
of l and l′. Hence, we will count the number of S-decorated isomorphism classes
for each of the 4 isomorphism classes of simple graphs with 3 vertices.

1 2

3

1 2

3

1 2

3

1 2

3

Figure 1: The four isomorphism classes of simple graphs with 3 vertices.

Without loss of generality, let S = {a, b}.
We start with the first isomorphism class, which consists of simple graphs

with 3 vertices and no edges. We can enumerate all possible ordered list repre-
sentations of l as follows:

1. [a, a, a]

2. [a, a, b]

3. [a, b, b]

4. [b, b, b]

We note that any graph with 3 vertices and no edges are isomorphic, and the
isomorphism can be any bijection between the two vertex sets. This means (G, l)
and (G′, l′) should be S-decorated isomorphic if l and l′ share the same ordered
list representation as we can just pair up same-labelled vertices in G and G′.

We capture this line of reasoning in the following lemma

Lemma 6. Let G and G′ be simple graphs with n vertices such that any bijection from
V(G) to V(G′) is a graph isomorphism. Let l and l′ be labelling functions for G and G′

respectively.
If l and l′ share the same ordered list representation, then (G, l) and (G′, l′) are

S-decorated isomorphic.

Proof. Suppose l and l′ share the same ordered list representation. We shall
construct an isomorphism ϕ : V(G) → V(G′) such that l(v) = l′(ϕ(v)) for all
v ∈ V(G).

4

Since l and l′ share the same ordered list representation, we can create n

distinct pair of vertices (v, u) where v ∈ V(G) and u ∈ V(G′) such that their labels
match (so l(v) = l′(u)). We can do this in a way such that no two pairs share the
same vertex in G or G′ since l and l′ have the same ordered list representation
and |V(G)| = |V(G′)|. Then, we can define ϕ to be the function that maps v to u

for each pair (v, u).
We justify that ϕ is a bijection. Since no two pairs share the same vertex in G

or G′, ϕ pairs each element of V(G) with exactly one element of V(G′) and vice
versa. Hence, ϕ is a bijection.

Since G and G′ are defined to be simple graphs such that any bijection from
V(G) to V(G′) is a graph isomorphism, ϕ is also an isomorphism from G to G′.
Lastly, by construction, we have l(v) = l′(ϕ(v)) for all v ∈ V(G).

Therefore, (G, l) and (G′, l′) are S-decorated isomorphic.

Using both Lemma 6 and Lemma 5, each of the four ordered list represen-
tations of l corresponds to a unique isomorphism class of S-decorated simple
graphs. Thus, there are 4 isomorphism classes of S-decorated simple graphs
with 3 vertices and no edges.

We also note that for any graphs G and G′ in the isomorphism class consisting
of graphs with 3 vertices and 3 edges (so the fourth one depicted in Figure 2),
any bijection from V(G) to V(G′) is a graph isomorphism. So, by Lemma 6 and
Lemma 5, the number of isomorphism classes of S-decorated simple graphs with
3 vertices and 3 edges is also 4.

Now, we need to count the S-decorated isomorphism classes of simple graphs
with 3 vertices and 1 or 2 edges.

We analyze the second isomorphism class, which consists of simple graphs
with 3 vertices and 1 edge. Lemmas 6 and 5 do not apply here since, for example,
if the singular edge of G maps to a and the singular edge of G′ maps to b, then
there is no S-decorated isomorphism between (G, l) and (G′, l′). We count by
cases of the ordered list representation of l by considering the possible labelling
of the unique singular disconnected vertex.

1. Case [a, a, a]:

If both l and l′ map all vertices to a, then any graph isomorphism between
G and G′ will also preserve the S-decoration. Thus, this case has 1 isomor-
phism class.

2. Case [a, a, b]:

5

There would be 2 isomorphism classes in this case. The first class is where
the singular disconnected vertex maps to b and the other two vertices map
to a. The second class is where the singular disconnected vertex maps to a

and the other two vertices map to a and b.

3. Case [a, b, b]:

Similar to the previous case, there would be 2 isomorphism classes in this
case. The first case is where the singular disconnected vertex maps to a

and the other two vertices map to b. The second case is where the singular
disconnected vertex maps to b and the other two vertices map to a and b.

4. Case [b, b, b]:

This is equivalent to the first case, so there is 1 isomorphism class.

So, in total, there are 6 isomorphism classes of S-decorated simple graphs
with 3 vertices and 1 edge.

The same logic can be applied to the third isomorphism class, which consists
of simple graphs with 3 vertices and 2 edges. In this case, the unique vertex
would be the one with degree 2. Hence, there are 6 isomorphism classes of
S-decorated simple graphs with 3 vertices and 2 edges.

Therefore, our results can be summarized as follows:

Number of edges Number of S-decorated isomorphism classes
0 4
1 6
2 6
3 4

Table 1: The number of isomorphism classes of S-decorated simple graphs with
3 vertices.

bringing the total number of isomorphism classes of S-decorated simple graphs
with 3 vertices to 20.

6

3 Linear Graphs

We further the exploration by answering Question 3 for linear graphs (i.e. paths)
with n vertices. More formally,

Question 7. Let S be a finite set and n a non-negative integer. How many iso-
morphism classes of S-decorated linear graphs are there with n vertices?

By definition, a linear graph is a simple graph with n vertices and n − 1

edges whose vertices can be ordered in a linear sequence such that the edges are
between consecutive vertices in the sequence.

1 2 3 4 5

Figure 2: A linear graph with 5 vertices.

We define the notion of a label sequence of an S-decorated linear graph.

Definition 8. Let (G, l) be an S-decorated linear graph. Let V(G) = {v1, v2, . . . , vn}

where v1, v2, . . . , vn form a linear path in G. The label sequence of G on l is the
sequence Ll(G) = [l(v1), l(v2), . . . , l(vn)].

The reverse of Ll(G) is denoted by Ll(G)R = [l(vn), l(vn−1), . . . , l(v1)].

We note that depending on the choice of which of the two endpoints is v1 and
which is vn, the label sequence of a linear graph can be either Ll(G) or Ll(G)R.
Using this definition, we provide and prove the following theorem about the
label sequences of S-decorated linear graphs.

Theorem 9. For linear graphs G and G′ with n vertices (where G ≃ G′ ≃ Pn), and
labelling functions l : V(G) → S and l′ : V(G′) → S, (G, l) and (G′, l′) are S-decorated
isomorphic if and only if Ll(G) = Ll′(G

′) or Ll(G) = Ll′(G
′)R.

Proof. Without loss of generality, suppose G is a path v1, v2, . . . , vn and G′ is a
path u1, u2, . . . , un. We note

Ll(G) = [l(v1), l(v2), . . . , l(vn)] and Ll′(G
′) = [l′(u1), l

′(u2), . . . , l
′(un)].

We prove both directions of the biconditional statement.
=⇒ Suppose (G, l) and (G′, l′) are S-decorated isomorphic. Then, there exists

an isomorphism ϕ from G to G′ such that l(v) = l′(ϕ(v)) for all v ∈ V(G).
Let ϕ be an arbitrary S-deocrated isomorphism from (G, l) to (G′, l′). Since

ϕ is edge-preserving, it must map v1 (an endpoint of G) to either endpoint of G′

(so either u1 or un). We consider the two cases separately.

7

1. Case ϕ maps v1 to u1:

Since ϕ is an S-decorated isomorphism, l(v1) = l′(ϕ(v1)) = l′(u1). Further-
more, since ϕ is edge-preserving, it forces ϕ(v2) = u2, so we also know
l(v2) = l′(u2). We continue this reasoning for all pairs of vertices in G and
G′, allowing us to conclude Ll(G) = Ll′(G

′).

2. Case ϕ maps v1 to un:

Similarly, since ϕ is an S-decorated isomorphism, l(v1) = l′(ϕ(v1)) = l′(un).
This forces ϕ(v2) = un−1, so we also know l(v2) = l′(un−1). Continuing this
reason, we find that the lists

Ll(G) = [l(v1), l(v2), . . . , l(vn)] and Ll′(G
′) = [l′(un), l

′(un−1), . . . , l
′(u1)]

are identical. Consequently, we have Ll(G) = Ll′(G
′)R.

Thus, in both cases, we have Ll(G) = Ll′(G
′) or Ll(G) = Ll′(G

′)R.⇐= Suppose Ll(G) = Ll′(G
′) or Ll(G) = Ll′(G

′)R. We argue by cases:

1. Case Ll(G) = Ll′(G
′):

In this case, we shall construct an S-decorated isomorphism ϕ from G to
G′. Let ϕ : V(G) → V(G′) be the function that maps vi ∈ V(G) to ui ∈ V(G′)
for all valid i.

ϕ is bijective by construction since it pairs each element of either V(G) or
V(G′) with exactly one element of the other set. Furthermore, since G is
defined as a path v1, v2, . . . , vn and G′ is defined as a path u1, u2, . . . , un, ϕ
is also edge-preserving.

Since Ll(G) = Ll′(G
′), we have l(vi) = l′(ui) for all valid i. Since each

ui = ϕ(vi), we also have l(vi) = l′(ϕ(vi)) for all valid i. Thus, ϕ is an
S-decorated isomorphism from (G, l) to (G′, l′).

2. Case Ll(G) = Ll′(G
′)R:

Likewise, we construct an S-decorated isomorphism ϕ from G to G′. Let
ϕ : V(G) → V(G′) be the function that maps vi to un−i+1 for all valid i.

ϕ is bijective by construction since it pairs each element of either V(G) or
V(G′) with exactly one element of the other set. Moreover, we can view ϕ

as relabelling the vertices of G from v1, v2, . . . , vn to un, un−1, . . . , u1. The
resulting graph forms the path u1, u2, . . . , un which is exactly G′, so ϕ is
also edge-preserving.

8

Since Ll(G) = Ll′(G
′)R, we have l(vi) = l′(un−i+1) for all valid i. Since each

un−i+1 = ϕ(vi), we also have l(vi) = l′(ϕ(vi)) for all valid i. Thus, ϕ is an
S-decorated isomorphism from (G, l) to (G′, l′).

In both cases, we have constructed an S-decorated isomorphism from (G, l) to
(G′, l′). Therefore, (G, l) and (G′, l′) are S-decorated isomorphic.

Since both directions of the biconditional statement have been proven, the
lemma is proven.

With Theorem 9, we have reduced the problem of counting the number of
isomorphism classes of S-decorated linear graphs to counting the number of
label sequences, treating sequences that are reverses of each other as identical.

Each label sequence is a sequence of n elements, where each element could
possibly be any of the |S| elements. So, there are |S|n possible label sequences.

Sequences that form a palindrome do not have a reverse that is distinct from
itself. So each palindromic sequence contributes to a new isomorphism class
of S-decorated linear graphs. Sequences that do not form a palindrome have a
reverse that is distinct from itself, so we must divide the number of sequences
that do not form a palindrome by 2 to avoid overcounting. Thus, the number of
isomorphism classes of S-decorated linear graphs with n vertices is

of palindromic sequences +
of non-palindromic sequences

2
.

We note that the number of non-palindromic sequences can be calculated as

|S|n − # of palindromic sequences.

Thus, we seek to count the number of palindromic sequences.
A palindrome is completely determined by the first half of the sequence. So

for an even length sequence, the number of palindromic sequences is the same
as the number of sequences of half the length. For an odd length, the number of
palindromic sequences is the same as the number of sequences of half the length,
except that the middle element can be any of the |S| elements. To capture this
line of reasoning, we have:

of palindromic sequences = |S|ceil(n/2).

Therefore, the number of isomorphism classes of S-decorated linear graphs

9

with n vertices is

= |S|ceil(n/2) +
|S|n − |S|ceil(n/2)

2

=
|S|n + |S|ceil(n/2)

2
.

Using this formula, we can tabulate the number of isomorphism classes of
S-decorated linear graphs with n vertices for various n and |S|. Arbitrarily, we
choose n = 4. The results are tabulated as follows:

|S| Number of S-decorated isomorphism classes
1 1
2 10
3 45
4 136
5 325
6 666
7 1225
8 2080
9 3321
10 5050

Table 2: The number of isomorphism classes of S-decorated linear graphs with 4

vertices.

From Table 3, we can conclude that as |S| increases, the number of isomor-
phism classes of S-decorated linear graphs with n vertices increases. Introducing
more elements to S increases the number of ways to label the vertices of the linear
graph, which in turn increases the number of isomorphism classes of S-decorated
linear graphs.

10

3.1 Counting Isomorphism Classes through Ordered List Repre-
sentations

Although we have already found that the number of isomorphism classes of S-
decorated linear graphs with n vertices is

|S|n + |S|ceil(n/2)

2

it would still be interesting to explore how the number of isomorphism classes
can be counted through the ordered list representations of the labelling functions
(as defined in Definition 4).

First, we note that finding the number of ordered list representations is equiv-
alent to finding the number of ways to choose n elements from a set of |S| ele-
ments with repetition. Therefore, the number of ordered list representations for
l : V(G) → S where |V(G)| = n is (

|S|+ n− 1

n

)
.

Next, for each of these
(
|S|+n−1

n

)
ordered list representations, we can apply The-

orem 9 to determine whether the corresponding S-decorated linear graph is in
a new isomorphism class. This is equivalent to checking the number of palin-
dromes and non-palindromes that can be made from each ordered list represen-
tation.

Thus, given an arbitrary labelling function l, we seek to count the number of
palindromes (which also would help us count the number of non-palindromes)
that can be made from its ordered list representation. We consider two cases
of the parity of the length of l’s ordered list representation which is equal to
|V(G)| = n:

1. Case n is even:

For there to be a palindrome of even length, the first half of the sequence
must be the reverse of the second half. This means the frequency of an
element in the first half must be the same as the frequency of the same
element in the second half. Thus, each distinct element in l’s ordered list
representation must have an even frequency for there to be at least one
palindrome. Else, there would be no palindromes.

Further, since each palindrome is completely determined by the first half,
the number of palindromes would be equal to the multinomial coefficient of

11

half of the length and half of each frequency of the elements in l’s ordered
list representation. Symbolically,

=

(
n/2

f1
2
, f2

2
, . . . ,

f|S|
2

)
where each fi is the frequency of the ith element of S in l’s ordered list
representation.

2. Case n is odd:

The only way to form a palindrome from l’s ordered list representation is if
exactly one element has an odd frequency and the rest have even frequen-
cies. The one element with odd frequency can be placed in the middle of the
sequence. If there is either no element with an odd frequency or more than
one element with an odd frequency, then there would be no palindromes.

If there is exactly one element with odd frequency in l’s ordered list repre-
sentation, then the number of palindromes can be calculated by the even-
length case, where the length is n− 1 and the frequency of the odd element
is fi − 1.

To summarize, the algorithm to count the number of palindromes by ordered
list representation is as follows:

1. Iterate through each of the
(
|S|+n−1

n

)
possible ordered list representations of

l.

2. For each ordered list representation calculate the number of palindromes:

(a) Count the frequency of each element in the ordered list representation.

(b) If n is even: if there exists an element of odd frequency, the number
of palindromes is 0. Else, the number of palindromes is

(n/2
f1
2
,
f2
2
,...,

f|S|
2

)
where each fi is the frequency of the ith element of S in the ordered
list representation.

(c) If n is odd: if there is more than one element with odd frequency, or
there is no element with odd frequency, the number of palindromes is
0. Else, consider the even-length case where the length is n−1 and the
frequency of the odd element is fi − 1.

12

3. For each ordered list representation: increment the running total by the
number of palindromes added with the number of non-palindromes di-
vided by 2.

(a) The total number of arrangements is
(n

f1
2
,
f2
2
,...,

f|S|
2

)
where each fi is the

frequency of the ith element of S in the ordered list representation.
So, the number of non-palindromes would be equal to

(n
f1
2
,
f2
2
,...,

f|S|
2

)
sub-

tracted by the number of palindromes.

4. Return the running total.

This algorithm can be used to count the number of isomorphism classes of
S-decorated linear graphs with n vertices. The implementation of this algorithm
can be found in the Listing 5.

13

4 Literature: Weisfeiler-Lehman Algorithm

When given two S-decorated graphs (G, l) and (G′, l′), one might want to deter-
mine whether they are S-decorated isomorphic in an efficient manner. We can
observe that when |S| = 1, this problem reduces to the graph isomorphism problem.

Definition 10 ([2, 1]). The graph isomorphism problem can be stated as follows:
given two graphs G and H, does there exist an isomorphism from G to H?

When |S| = 1, all vertices are mapped to the same singleton element. So, any
isomorphism between G and G′ will also preserve the S-decoration. Thus, (G, l)
and (G′, l′) are S-decorated isomorphic if and only if G and G′ are isomorphic.

However, as stated in [2], there is no known efficient (polynomial time) algo-
rithm for the graph isomorphism problem. If we could find an efficient polyno-
mial time algorithm for the S-decorated isomorphism problem, we would have
also solved the graph isomorphism problem in polynomial time.

Although determining definitively whether two graphs are isomorphic is dif-
ficult, there are heuristic procedures that can be used to determine whether two
graphs are not isomorphic or inconclusively isomorphic. One such example is
the Weisfeiler-Lehman algorithm.

As described in [1], there are many variations of the algorithm, but in the
simplest 1-dimensional form, the algorithm works as follows:

1. Assign each vertex a color, initially based on its degree.

2. At each subsequent iteration, update each vertex’s color based on its color
in the previous iteration and the multiset of colors of its neighbors.

3. Continue iterating until the colors stabilize, meaning that no vertex’s color
changes from one iteration to the next.

Given two graphs, if the colors stabilize to different colorings, then the graphs
are not isomorphic. However, if the colors stabilize to the same coloring, then the
graphs may or may not be isomorphic; the answer is inconclusive. In this way,
the algorithm does not completely solve the graph isomorphism problem, but it
can be used as a heuristic to determine non-isomorphism.

Furthermore, this algorithm is generalizable as detailed in [1, 1.2] to higher
dimensions, where higher dimensional Weisfeiler-Lehman algorithms can deter-
mine non-isomorphism for a larger class of graphs.

However, [1, 2.1] cites counterexamples to the Weisfeiler-Lehman algorithm,
where the algorithm fails to determine non-isomorphism for certain classes of

14

graphs. Hence, regardless of the dimension of the Weisfeiler-Lehman algorithm,
there will always be non-isomorphic graphs for which the algorithm cannot de-
termine non-isomorphism. This represents a fundamental limitation of the tradi-
tional Weisfeiler-Lehman algorithm.

To address this limitation, [1] introduces a recursive k-dim Weisfeiler-Lehman
algorithm. This modification refines the Weisfeiler-Lehman algorithm and is able
to determine non-isomorphism for the aforementioned counterexamples.

4.1 Application to S-Decorated Isomorphisms

The idea of finding efficient ways to determine non-isomorphism is intriguing
and can be applied to the S-decorated isomorphism problem. For example, sup-
pose we seek to determine whether two S-decorated graphs (G, l) and (G′, l′) are
not S-decorated isomorphic or inconclusively S-decorated isomorphic. A poten-
tial approach is to first check whether l and l′ share the same ordered list repre-
sentation as mentioned in Lemma 5. If they do not, we can safely conclude that
(G, l) and (G′, l′) are not S-decorated isomorphic. If l and l′ do share the same
ordered list representation, then we can apply the recursive k-dim Weisfeiler-
Lehman algorithm to determine non-isomorphism.

Checking if two ordered lists are equal can be done efficiently. So, having
this check as a preliminary step could save computation time in certain cases by
avoiding the recursive k-dim Weisfeiler-Lehman algorithm.

15

5 Appendix

The following is the implementation of the algorithm to count the number of
isomorphism classes of S-decorated linear graphs with n vertices through the
possible ordered list representations of the labelling functions. Comments have
been added for additional explanation.

1 import itertools
2 import math
3 from typing import List
4
5
6 def multinomial_coefficient(n: int , k: List[int]) -> int:
7 """
8 Compute the multinomial coefficient of n and k.
9 """

10 assert sum(k) == n
11 return math.factorial(n) // math.prod(math.factorial(i)

for i in k)
12
13
14 assert multinomial_coefficient (4, [2, 2]) == 6
15 assert multinomial_coefficient (4, [1, 1, 2]) == 12
16 assert multinomial_coefficient (4, [4]) == 1
17 assert multinomial_coefficient (7, [2, 1, 4]) == 105
18
19
20 def count_palindromes(k: List[int]) -> int:
21 """
22 Count the number of palindromes in a list of integers.
23 """
24 n = len(k)
25 freqs = {x: k.count(x) for x in k}
26
27 if n % 2 == 0:
28 # n is even
29 if any(x % 2 != 0 for x in freqs.values ()):
30 # If any number appears an odd number of times ,

it would be impossible to form a palindrome.
31 # Since n is even , a given number should appear

16

the same number of times on both halves of
the palindrome.

32 # So, for there to be a palindrome , all numbers
should appear an even number of times.

33 return 0
34 # A palindrome is completely determined by the

structure of the first half.
35 # So, the number of palindromes would be the

multinomial coefficient of n // 2 and half the
frequency of each number.

36 return multinomial_coefficient(n // 2,
37 [x // 2 for x in

freqs.values ()])
38
39 # n is odd
40 odd_freqs = [x for x in freqs if freqs[x] % 2 != 0]
41 # If n is odd , the only way to form a palindrome is if

exactly one number appears an odd number of times.
42 # We can put this number in the middle of the palindrome

.
43 # Then , the number of palindromes would be the number of

ways to form a palindrome with the remaining numbers
44 # (of which there are an even number of each).
45 if len(odd_freqs) != 1:
46 return 0
47 k.remove(odd_freqs [0])
48 return count_palindromes(k)
49
50
51 assert count_palindromes ([1, 1, 1, 1]) == 1
52 assert count_palindromes ([0, 0, 1, 1]) == 2
53 assert count_palindromes ([0, 0, 0, 1]) == 0
54 assert count_palindromes ([1, 1, 2, 2, 3, 3]) == 6
55 assert count_palindromes ([1, 1, 1, 2, 2, 3, 3]) == 6
56 assert count_palindromes ([1, 1, 1, 2, 2, 2, 3]) == 0
57
58
59 def count_linear_s_decorated_iso_classes(n: int , k: int) ->

int:
60 """
61 Count the number of linear S-decorated isomorphism

17

classes of linear graphs with n vertices and |S| = k.
62 """
63 ordered_list_representations = itertools.

combinations_with_replacement(
64 range(k), n)
65 iso_classes = 0
66 for rep in ordered_list_representations:
67 # For each ordered list representation , count the

number of arrangements , treating lists that are
reverses of each other as the same.

68 total = multinomial_coefficient(n, [rep.count(x) for
x in range(k)])

69 palindromes = count_palindromes(list(rep))
70 # Each arrangement is either a palindrome or non -

palindrome.
71 # So, we can compute the number of non -palindromes

by subtracting the number of palindromes from the
total.

72 non_palindromes = total - palindromes
73
74 # Each non -palindrome arrangement can be grouped

with its reverse to form an isomorphism class.
75 # So, the number of isomorphism classes is the sum

of the number of palindromes and half the number
of non -palindromes.

76 iso_classes += palindromes + non_palindromes // 2
77 return iso_classes
78
79
80 assert count_linear_s_decorated_iso_classes (4, 1) == 1
81 assert count_linear_s_decorated_iso_classes (11, 1) == 1
82 assert count_linear_s_decorated_iso_classes (4, 2) == 10
83 assert count_linear_s_decorated_iso_classes (3, 3) == 18

The following is a program that compares three implementations to count the
number of S-decorated isomorphism classes of linear graphs with n vertices.

1. Formulaic method using |S|n+|S|ceil(n/2)

2
.

2. Algorithmic method through considering possible ordered list representa-
tions using Algorithm 5.

18

3. Brute force method that lists through all possible lists and removes ones
that are reverses of each other.

Running the code reveals that all three methods produce the same results. How-
ever, the formulaic method is the most efficient, followed by the algorithmic
method, and then the brute force method.

1 import itertools
2
3
4 def remove_reversals(possible_lists):
5 iso = []
6 for l in possible_lists:
7 is_iso = True
8 for r in iso:
9 if l == r[:: -1] or l == r:

10 is_iso = False
11 break
12 if is_iso:
13 iso.append(l)
14 return iso
15
16
17 def count_iso(n, k):
18 possible_lists = list(itertools.product(range(k), repeat

=n))
19 # Remove lists that are reversals of each other
20 iso = remove_reversals(possible_lists)
21 return len(iso)
22
23
24 import algorithm
25 import math
26
27 n = 4
28
29 for s in range(1, 11):
30 formula_ans = (s**n + s**math.ceil(n / 2)) / 2
31 algorithm_ans = algorithm.

count_linear_s_decorated_iso_classes(n, s)
32 brute_ans = count_iso(n, s)

19

33 print("n␣=␣", n, "k␣=␣", s)
34 print("Formula:␣", int(formula_ans))
35 print("Algorithm:␣", algorithm_ans)
36 print("Brute:␣", brute_ans)

20

References

[1] B. L. Douglas. The weisfeiler-lehman method and graph isomorphism testing.
2011.

[2] S. Fortin. The Graph Isomorphism Problem. 1996.

21

	Introduction
	Example Case
	Linear Graphs
	Literature: Weisfeiler-Lehman Algorithm
	Appendix

