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Abstract. We aim to introduce Cayley color graphs as powerful visualization tools for understand-
ing groups geometrically. These graphs are constructed using a group and a generating set, and
they provide insights into various group properties through the application of graph theoretical
methods. We seek to establish a fundamental connection between groups and graphs by proving
that finite groups are isomorphic to the group of color-preserving automorphisms of their corre-
sponding Cayley color graphs. Exploiting this connection, we then delve into the investigation of
specific properties upheld by the Cayley color graphs of Abelian groups.

1. Introduction

A Cayley color graph is an edge-colored directed graph that corresponds to a specific finite
group and a chosen generating set (defined in Definition 2.1). Let G be a finite group and ∆ be a
generating set of G. We denote G’s Cayley color graph as D∆(G).

We define D∆(G) as follows:
(1) The vertex set of D∆(G) is equal to G.
(2) Each a ∈ ∆ corresponds to an edge color a.
(3) For distinct g, h ∈ G, (g, h) is an edge if and only if for some a ∈ ∆, g−1h = a. This edge

is colored a.
In this paper, we will prove that the group of color-preserving automorphisms (defined in Defi-
nition 2.5) of D∆(G) is isomorphic to G.

Main Theorem. Let G be a finite group with generating set ∆. The group of color-preserving automor-
phisms of D∆(G) is isomorphic to G.

Example 1.1. For example, we can consider the finite group Z4 = {0, 1, 2, 3} with generating set
∆ = {2, 3}. The Cayley color graph D∆(Z4) is illustrated in Figure 1.
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Figure 1. Cayley color graph of Z4 with generating set {2, 3}.
As illustrated in Figure 1, each pair of vertices associated by 2 ∈ ∆ is connected with a blue-
dashed edge while each pair of vertices associated by 3 ∈ ∆ is connected with a red-solid edge.
According to Theorem 1, the group of all color-preserving automorphisms of D∆(Z4) is isomor-
phic to G.
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The idea of formulating a graphical representation of finite groups originated in an 1878 paper
by Arthur Cayley [2]. Cayley set the foundations for graphically analyzing groups by defining a
way to construct a graph from a finite group.

A few decades later in 1936, Dénes Kőnig posed a question that seeked to identify the cases in
which a group is isomorphic to an automorphism group of a graph [5]. Two years later in 1938,
Robert Frucht found a procedure to transform a Cayley color graph into an undirected graph
by substituting each edge with a subgraph depending on the edge’s direction and color [3].
Effectively, Frucht encoded each edge’s direction and color with a simple undirected subgraph.
Frucht then proved that the automorphic group of the resulting graph is isomorphic to the
original finite group, hence answering Kőnig’s original question.

This paper is structured to prove the Main Theorem 1 and explore its applications. In doing
so, we first cover the necessary background knowledge in Section 2. We define the necessary
terminology to understand how to construct a Cayley color graph and some foundational lem-
mas surrounding color-preserving automorphisms. Then, we transition into proving the Main
Theorem 1 in Section 3. In Section 4, we explore how the structure of Cayley color graphs reveal
whether or not its underying group is Abelian. Finally, we explore potential future directions of
Cayley color graphs in Section 5.

2. Background

This paper assumes familiarity with the fundamentals of group theory and isomorphisms as
in [4, 3 and 6]. We will be extending these concepts to conform to graph theory, so we also
assume knowledge of graphs and their basic properties as in [3, 1.1].

The structure of a constructed Cayley color graph is dependent on both the chosen finite group
and a particular subset known as a generating set.

Definition 2.1. Let G be a group and ∆ ⊆ G. ∆ is a generating set if for each g ∈ G, we can write:

g = a1a2 · · ·an
where ai ∈ ∆. The ai are not necessarily distinct. Further, the elements in ∆ are called generators.

We note that each finite group may potentially have multiple generating sets.

Example 2.2. Trivially, one possible generating set of Z6 is Z6 itself. Alternatively, we can consider
∆ = {2, 3} ⊂ Z6. We can show that each g ∈ Z6 can be expressed by elements in ∆ under the
group’s operation:

0 = 2+ 2+ 2+ 2 3 = 3

1 = 2+ 2+ 3 4 = 2+ 2

2 = 2 5 = 2+ 3

Thus, we can conclude that ∆ = {2, 3} is a generating set of Z6.

Similar to how we can create group automorphisms, we can also create isomorphisms from a
graph to itself known as a graph automorphism.

Definition 2.3 ([3, 5.2]). Let G be a graph with vertex set VG and edge set EG. A graph au-
tomorphism is a permutation σ : VG → VG such that ∀u, v ∈ VG, (u, v) ∈ EG if and only if
(σ(u), σ(v)) ∈ EG.

Example 2.4. For example, we illustrate a graph automorphism in Figure 2.
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Figure 2. Graph automorphism σ permuting a graph.

Since graph automorphisms are permutations on a graph’s vertex set, we can express σ in cycle
notation (defined in [4, 5]):

σ = (18)(27)(35)(46).

We can observe that each pair of adjacent vertices in the original graph is adjacent in the per-
muted graph and each pair of nonadjacent vertices in the original graph is nonadjacent in the
permuted graph.

When dealing with edge-colored graphs, we may also classify certain automorphisms as color-
preserving. In edge-colored graphs, edges are designated a color as a way to differentiate edges
from each other. With Cayley color graphs, it is important to preserve edge coloring in addition
to adjacency and nonadjacency.

Definition 2.5. A color-preserving automorphism is a graph automorphism that additionally pre-
serves edge color. More formally, let G be a graph with edge set EG. Let ϕ be a color-preserving
automorphism. Then, (u, v) ∈ EG and (ϕ(u), ϕ(v)) ∈ EG have the same color.

Next, we can consider the color-preserving automorphisms of a Cayley color graph.

Lemma 2.6 ([3, 5.4]). Let G be a finite group with a generating set ∆ and let ϕ be a permutation on the
vertex set of D∆(G). Then, ϕ is a color-preserving automorphism of D∆(G) if and only if

ϕ(gh) = (ϕ(g))h

for every g ∈ G and h ∈ ∆.

Lemma 2.7 ([3, 5]). Let G be a finite group with generating set ∆. Then, the set of all color-preserving
automorphisms of D∆(G) forms a subgroup of Aut(D∆(G)).

3. Main Theorem

After covering the essential background behind Cayley color graphs, we can now prove Theo-
rem 1. We begin by proving that we can express the group of color-preserving automorphisms
as the set of all permutations on G by left multiplication. We then construct an isomorphism
between the group of color-preserving automorphisms and the finite group.

Main Theorem. Let G be a finite group with generating set ∆. The group of color-preserving automor-
phisms of D∆(G) is isomorphic to G.
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Proof. Firstly, let G be a finite group of order n such that:

G = {g1, . . . gn}

where g1 denotes the identity of G. Furthermore, let ∆ denote a generating set with respect to G
(as defined in Definition 2.1).

For each gi ∈ G, we define the mapping ϕi : G→ G as follows:

g 7→ gig.

We can prove that for each gi ∈ G, the resulting ϕi is a permutation on G. To do so, we must
prove that ϕi is both injective and surjective:

(1) ϕi is injective: Let gj, gk ∈ G be arbitrary elements such that ϕi(gj) = ϕi(gk). It follows:

=⇒ gigj = gigk

=⇒ (g−1i )gigj = (g−1i )gigk [group inverses]

=⇒ gj = gk.

Hence, for all gj, gk ∈ G, we have ϕ(gj) = ϕ(gk) =⇒ gj = gk. Thus, we can conclude
that ϕi is injective.

(2) ϕi is surjective: Let gj ∈ G be an arbitrary element. It follows using group associativity:

ϕi(g
−1
i gj) = gi(g

−1
i gj) = (gig

−1
i )gj = gj.

Hence, for each gj ∈ G, there exists some element in G such that ϕi maps to gj. Thus, ϕi
is surjective.

Since ϕi is both injective and surjective, it can be viewed as a permutation on G. Additionally,
since the vertex set of D∆(G) is equal to G by construction, we can also view ϕi as a permutation
on G’s Cayley color graph.

We can prove that ϕi satisfies the property outlined in Lemma 2.6. Let g ∈ G and h ∈ ∆. It
follows using group associativity:

ϕi(gh) = gi(gh) = (gig)h = (ϕi(g))h.

Thus, ϕi is a color-preserving automorphism of D∆(G).
Next, we can prove that if ϕ is a color-preserving automorphism of D∆(G), then ϕ = ϕi for

some i ∈ {1, . . . , n}. Suppose ϕ(g1) = gi and gs = h1 · · ·ht ∈ G be arbitrary where hi ∈ ∆ (not
necessarily distinct). We know we can express gs in this way because ∆ is a generating set. It
follows:

ϕ(gs) = ϕ(g1h1 · · ·ht)
= ϕ(g1h1 · · ·ht−1)ht [Lemma 2.6]

= ϕ(g1h1 · · ·ht−2)ht−1ht [Lemma 2.6]

= · · ·
= ϕ(g1)h1 · · ·ht
= gigs.

Hence, if ϕ is a color-preserving automorphism of D∆(G), then ϕ is a permutation by left multi-
plication on G.
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From these results, we express the set of all color-preserving automorphisms (we denote as
A):

A = {ϕi | i ∈ {1, . . . , n}}.

In other words, the set of all color-preserving automorphisms of D∆(G) is equivalent to the set
of all permutations on G by left multiplication. By Lemma 2.7, we know A is a group.

Next, we can establish an isomorphism between G and A, the group of color-preserving auto-
morphisms of D∆(G). Let ψ : G→ A be a mapping defined as follows:

ψ(gi) = ϕi.

We proceed by proving that ψ is an isomorphism:

(1) ψ is injective: Let gj, gk ∈ G be arbitrary elements such that ψ(gj) = ψ(gk). It follows:

=⇒ ϕj = ϕk

=⇒ ϕj(g1) = ϕk(g1) [g1 ∈ G is identity]

=⇒ gjg1 = gkg1

=⇒ gj = gk.

Hence, for all gj, gk ∈ G, we have ψ(gj) = ψ(gk) =⇒ gj = gk. Thus, ψ is injective.
(2) ψ is surjective: By construction of A and definition of ψ, we note that ψ is vacuously

surjective. In particular, ϕi ∈ A is equivalent to ψ(gi) where gi ∈ G.
(3) ψ is operation-preserving: Let gi, gj ∈ G be arbitrary. We seek to prove ψ(gigj) is equal

to ψ(gi)ψ(gj). Suppose gigj = gk ∈ G. It follows:

ψ(gigj) = ψ(gk) = ϕk ψ(gi)ψ(gj) = ϕiϕj.

Then, we can prove ϕk = ϕiϕj. Let g ∈ G be arbitrary. It follows using group associativity:

ϕk(g) = gkg = (gigj)g = gi(gjg) = ϕi(gjg) = ϕi(ϕj(g)).

Since for all g ∈ G we have ϕk(g) = ϕi(ϕj(g)), it follows that ϕk = ϕiϕj. Thus we have
ψ(gigj) = ϕk = ϕiϕj = ψ(gi)ψ(gj), which means ψ is operation-preserving.

Therefore, since ψ is injective, surjective, and operation-preserving, we can conclude that G is
isomorphic to the group of color-preserving automorphisms of D∆(G). □

To illustrate our Main Theorem, we now turn our attention to constructing a Cayley color
graph from a finite group and identifying the color-preserving automorphisms in the following
Example 3.1.

Example 3.1. We consider the group Z6 with generating set ∆ = {2, 3}. We associate each element
of ∆ with an edge color as follows:

• 2: blue and dashed.
• 3: red and solid.

The Cayley color graph D∆(Z6) is illustrated in Figure 3.
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Figure 3. Cayley color graph of Z6 with generating set {2, 3}.
The group of color-preserving automorphisms of D∆(Z6) would be A = {ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5}

where ϕg(x) = gx for g, x ∈ Z6. By Theorem 1, we know A is isomorphic to Z6.

4. Cayley color graphs of Abelian Groups

Now that we have established an isomorphic connection between finite groups and the color-
preserving automorphisms of their Cayley color graph, we can observe what these geometric
representations reveal about groups. Specifically, we can look into the structure of Cayley color
graphs of Abelian groups.

Since each element of a group can be written as a product of generators, it is trivial to show
that if the generators commute then the group is Abelian. Thus, this motivates Lemma 4.1.

Lemma 4.1. Let G be a group and ∆ a generating set of G. If the elements in ∆ pairwise commute, then
G is an Abelian group.

If the elements in ∆ pairwise commute, it holds that for for all a, b ∈ ∆, ab = ba. This implies
that aba−1b−1 = e where e is the identity. We can think of the edges in a Cayley color graph as
applying a generator onto some element. Thus, if the underlying group of a Cayley color graph
is Abelian, it holds that for two distinct colors a1 and a2, the path a1, a2, a−11 , a

−1
2 (where the

inverse of a color is interpreted as following the edge in its reverse direction) should start and
end at the same vertex [1, 5.2.1]. We can use an original example to illustrate this concept more
clearly.

Original Example. We consider the symmetric group S3 = {e, (12), (23), (13), (123), (132)} where
e is the identity and the rest of the elements are written in cycle notation as in [4, 5]. Since every
permutation in S3 can be written as a product of 2-cycles ([4, 5.4]), we know ∆ = {(12), (23), (13)}

is a generating set. We assign each generator in ∆ with the following edge colors:
• (12): blue and dashed.
• (23): black and dotted.
• (13): red and solid.

The resulting Cayley color graph D∆(S3) is illustrated in Figure 4.
e

(23)(12) (13)

(123) (132)
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Figure 4. Cayley color graph of S3 with generating set {(12), (23), (13)}.

From Figure 4 we observe that if we pick two colors, a1 and a2, and follow the path a1, a2, a−11 ,
a−12 , the starting vertex is distinct from the ending vertex. For example, we pick two colors a1
and a2 represented by the generators (12) and (23) respectively. Starting from vertex e (chosen
arbitrarily) results in the graph traversal illustrated in Figure 5.

e

(23)(12) (13)

(123) (132)

a1

a−11
a2 a−12

Figure 5. Non-Abelian path traversal of a Cayley color graph.

Figure 5 highlights that applying (12), (23), (12)−1, then (23)−1 does not return us back to the
same element, which means there exists generators that do not pairwise commute. Consequently,
we can conclude that S3 is non-Abelian.

5. Future directions

Cayley color graphs allow us to view groups from a different perspective; providing us the
ability to distinguish group properties with graph theoretical methods. Section 4 covered how
the structure of Cayley color graphs can reveal whether or not its underlying group is Abelian,
but we can also consider other group properties which motivates the following question.

Question 5.1. What other group properties do Cayley color graphs reveal and in what graph
theoretical ways can we determine them? In particular, how can we characterize cyclic groups,
dihedral groups, and symmetric groups by their Cayley color graphs?

Furthermore, Frucht’s theorem utilizes Cayley color graphs to prove that every group is iso-
morphic to an automorphism group of simple connected graphs in the finite case. However, this
raises the question whether the same can be said in the infinite case.

Question 5.2. Is every infinite group isomorphic to an automorphism group of a simple con-
nected graph?
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